Many Processors, Little Time: MCMC for Partitions via Optimal Transport Couplings

Brian L. Trippe
Postdoctoral Research Fellow
Columbia University Department of Statistics

Tin D. Nguyen

Tamara Broderick

Unsupervised Learning as Inference on Partitions

BISCUIT (F-score: 0.91)
Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Unsupervised Learning as Inference on Partitions

BISCUIT (F-score: 0.91)
Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Intractability of Bayesian posterior \rightarrow MCMC

Unsupervised Learning as Inference on Partitions

BISCUIT (F-score: 0.91)
Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Intractability of Bayesian posterior \rightarrow MCMC

Topic Modeling (Blei, 2012)

Community Detection (Abbe, 2017)

Computional Redistricting (MIT Tech. Review)

Unsupervised Learning as Inference on Partitions

BISCUIT (F-score: 0.91)
Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Intractability of Bayesian posterior \rightarrow MCMC

Challenge: MCMC takes a long time!

Computional Redistricting (MIT Tech. Review)

Unsupervised Learning as Inference on Partitions

BISCUIT (F-score: 0.91)
Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Intractability of Bayesian posterior \rightarrow MCMC

Topic Modeling (Blei, 2012)

Community Detection
(Abbe, 2017)

Challenge: MCMC takes a long time!
Goal: Use computational parallelism to accelerate MCMC

NC 2012
Computional Redistricting (MIT Tech. Review)

Unsupervised Learning as Inference on Partitions

BISCUIT (F-score: 0.91)
Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Intractability of Bayesian posterior \rightarrow MCMC

Topic Modeling (Blei, 2012)

Community Detection
(Abbe, 2017)

Challenge: MCMC takes a long time!
Goal: Use computational parallelism to accelerate MCMC

NC 2012
Computional Redistricting (MIT Tech. Review) This work: Optimal transport couplings make this possible

Roadmap

- Parallelizing MCMC with Couplings:
- Background \& Notation
- The Label Switching Problem
- We Frame Gibbs Sampling as Markov Chain on Partitions
- Our Optimal Transport Coupling
- Big-O Analysis Demonstrates Fast Computation
- Improved Estimation Error and Intervals with OTC over Naïve Parallelism in Practice

Parallel MCMC with Couplings, Background \& Notation

 Set-up \& challenge of burn-in bias: - Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
Parallel MCMC with Couplings, Background \& Notation

 Set-up \& challenge of burn-in bias:- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots w p_{X}

Parallel MCMC with Couplings, Background \& Notation

 Set-up \& challenge of burn-in bias:- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: $X_{0}, X_{1}, \ldots \ldots p_{X}$
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$

Parallel MCMC with Couplings, Background \& Notation

 Set-up \& challenge of burn-in bias:- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: $X_{0}, X_{1}, \ldots \ldots p_{X}$
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots ws p_{X}
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$

Unbiased MCMC Set-Up (simplified) ${ }^{\dagger}$ Use "coupled chain" $\left(Y_{0}, Y_{1}, \ldots\right)$ where:

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$ ("meeting time")

- "Naïve parallelism" gives little help!

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots ws p_{X}
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified) ${ }^{\dagger}$ Use "coupled chain" $\left(Y_{0}, Y_{1}, \ldots\right)$ where:

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$ ("meeting time") Then:

$$
\mathbb{E}[\underbrace{h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)}_{\text {unbiased estimate }}]=H^{*}
$$

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots ws p_{X}
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified) ${ }^{\dagger}$ Use "coupled chain" $\left(Y_{0}, Y_{1}, \ldots\right)$ where:

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$ ("meeting time") Then:

$$
\mathbb{E}[\underbrace{h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)}_{\text {unbiased estimate }}]=H^{*}
$$

- Reduce error with parallelism

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: $X_{0}, X_{1}, \ldots \ldots p_{X}$
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

$$
H^{*}=\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T}\right)\right]
$$

Unbiased MCMC Set-Up (simplified) ${ }^{\dagger}$ Use "coupled chain" $\left(Y_{0}, Y_{1}, \ldots\right)$ where:

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$ ("meeting time") Then:

$$
\mathbb{E}[\underbrace{h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)}_{\text {unbiased estimate }}]=H^{*}
$$

- Reduce error with parallelism

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots w p_{X}
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

$$
\mathbb{E}[\underbrace{h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)}_{\text {unbiased estimate }}]=H^{*}
$$

- Reduce error with parallelism

$$
\begin{aligned}
H^{*} & =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T}\right)\right] \quad \text { Telescopic sum • Re } \\
& =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{T} h\left(X_{t}\right)-h\left(X_{t-1}\right)\right]
\end{aligned}
$$

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots w p_{X}
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

$$
\begin{aligned}
H^{*} & =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T}\right)\right] \\
& =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{T} h\left(X_{t}\right)-h\left(X_{t-1}\right)\right]
\end{aligned}
$$

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: X_{0}, X_{1}, \ldots w p_{X}
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

$$
\begin{aligned}
H^{*} & =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T}\right)\right] \\
& =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{T} h\left(X_{t}\right)-h\left(Y_{t-1}\right)\right]
\end{aligned}
$$

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: $X_{0}, X_{1}, \ldots w p_{X}$
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

$$
\begin{aligned}
H^{*} & =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T}\right)\right] \\
& =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{T} h\left(X_{t}\right)-h\left(Y_{t-1}\right)\right]
\end{aligned}
$$

Unbiased MCMC Set-Up (simplified) ${ }^{\dagger}$
Use "coupled chain" ($\left.Y_{0}, Y_{1}, \ldots\right)$ where:

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$ ("meeting time")

Then:

$$
\mathbb{E}[\underbrace{h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)}_{\text {unbiased estimate }}]=H^{*}
$$

- Reduce error with parallelism

$$
=\mathbb{E}\left[\mathrm{h}\left(\mathrm{X}_{\mathrm{T}^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)\right] \longleftarrow \quad \begin{aligned}
& \text { Only finitely many non-zero } \\
& \text { terms. }
\end{aligned}
$$

Parallel MCMC with Couplings, Background \& Notation

Set-up \& challenge of burn-in bias:

- Want to compute $H^{*}=\int h(X) p_{X}(X) d X$
- Choose Markov chain: $X_{0}, X_{1}, \ldots \ldots p_{X}$
- Problem: for any $T<\infty, \mathbb{E}\left[h\left(X_{T}\right)\right] \neq H^{*}$
- "Naïve parallelism" gives little help!

$$
\begin{aligned}
H^{*} & =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T}\right)\right] \\
& =\lim _{T \rightarrow \infty} \mathbb{E}\left[h\left(X_{T^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{T} h\left(X_{t}\right)-h\left(Y_{t-1}\right)\right]
\end{aligned}
$$

$$
=\mathbb{E}\left[\mathrm{h}\left(\mathrm{X}_{\mathrm{T}^{\prime}}\right)+\sum_{t=T^{\prime}+1}^{\tau} h\left(X_{t}\right)-h\left(Y_{t-1}\right)\right] \longleftarrow \quad \begin{aligned}
& \text { Only finitely many non-zero } \\
& \text { terms. }
\end{aligned}
$$

How do we apply this to clustering problems?
[$\dagger]$ Jacob et al. "Unbiased Markov chain Monte Carlo methods with couplings." 2020

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up
Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for X_{t}

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up
Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up
Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs
- Coupling that meets quickly

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up
Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs
- Coupling that meets quickly

Unbiased MCMC Set-Up
Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs
- Coupling that meets quickly
- large $\tau \rightarrow$ high variance

Parallel MCMC with Couplings, Methodological Choices

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up
Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs
- Coupling that meets quickly
- large $\tau \rightarrow$ high variance
- not addressed by existing work!

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up

Use coupled chains such that

1. $Y_{t} \sim X_{t}$
2. $Y_{t-1}=X_{t}$ for $\mathrm{t}>\tau$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs
- Coupling that meets quickly
- large $\tau \rightarrow$ high variance
- not addressed by existing work!

Challenge: the "label-switching" problem Equivalent re-labelings impede mixing
\rightarrow slow meeting

Estimate (1 per processor)

Usual MCMC estimate

Bias
correction

Parallel MCMC with Couplings, Methodological Choices

Unbiased MCMC Set-Up

Use coupled chains such that

$$
\begin{aligned}
& \text { 1. } Y_{t} \sim X_{t} \\
& \text { 2. } Y_{t-1}=X_{t} \text { for } \mathrm{t}>\tau
\end{aligned}
$$

Choices for Clustering Applications:

- Transition kernel for $X_{t} \rightarrow$ Gibbs
- Coupling that meets quickly
- large $\tau \rightarrow$ high variance
- not addressed by existing work!

Challenge: the "label-switching" problem Equivalent re-labelings impede mixing \rightarrow slow meeting

Labeling 2

Key idea: Develop a coupling that is agnostic to the labeling

Coupling Gibbs Over Partitions via Optimal Transport

Coupling Gibbs Over Partitions via Optimal Transport

 We frame Gibbs samplers as over partitions instead of over labelings
Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X=\{\{1,3\},\{2\}\}$)
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X=\{\{1,3\},\{2\}\}$)
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X=\{\{1,3\},\{2\}\}$)
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible Need a metric:

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible
Need a metric: Use adjacency matrix \rightarrow Hamming distance

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X=\{\{1,3\},\{2\}\}$)
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible
Need a metric: Use adjacency matrix \rightarrow Hamming distance

Problem:

$$
\gamma^{*}=\inf _{\gamma} \sum_{k} \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right) d_{\text {Hamming }}\left(\pi^{k}, v^{k^{\prime}}\right)
$$

s.t. $\gamma \geq 0, \sum_{k} \gamma\left(\pi^{k}, v^{k^{\prime}}\right)=b^{k^{\prime}}, \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right)=a^{k}$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X=\{\{1,3\},\{2\}\}$)
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible
Need a metric: Use adjacency matrix \rightarrow Hamming distance

Problem:

$$
\gamma^{*}=\inf _{\gamma} \sum_{k} \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right) d_{\text {Hamming }}\left(\pi^{k}, v^{k^{\prime}}\right)
$$

s.t. $\gamma \geq 0, \sum_{k} \gamma\left(\pi^{k}, v^{k^{\prime}}\right)=b^{k^{\prime}}, \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right)=a^{k} \stackrel{\stackrel{N}{\mathrm{H}}}{\overline{\mathrm{H}}}$

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{v^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible
Need a metric: Use adjacency matrix \rightarrow Hamming distance

Problem:

$$
\gamma^{*}=\inf _{\gamma} \sum_{k} \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right) d_{\text {Hamming }}\left(\pi^{k}, v^{k^{\prime}}\right)
$$

s.t. $\gamma \geq 0, \sum_{k} \gamma\left(\pi^{k}, v^{k^{\prime}}\right)=b^{k^{\prime}}, \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right)=a^{k} \stackrel{\stackrel{\rightharpoonup}{5}}{\frac{\stackrel{H}{\sigma}}{0}}$

- By construction, does not suffer from label switching!

Tosh and Dasgupta [2014]; Rand [1971]; Nguyen, Trippe, Broderick [2022]

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over partitions instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $\left.X=\{\{1,3\},\{2\}\}\right)$
- Define $X(-n)$ as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid X_{t}(-n)\right)=\sum_{k} a_{k} \delta_{\pi^{k}}(\cdot)$

$$
Y_{t} \sim p_{\Pi \mid \Pi(-n)}\left(\cdot \mid Y_{t-1}(-n)\right)=\sum_{k^{\prime}} b_{k^{\prime}} \delta_{\nu^{k^{\prime}}}(\cdot)
$$

To couple X_{t+1} and Y_{t}, we use optimal transport:

$$
\left(X_{t+1}, Y_{t}\right) \sim \boldsymbol{\gamma}^{*}\left(p\left(\cdot \mid X_{t}\right), p\left(\cdot \mid Y_{t-1}\right)\right)
$$

Strategy for $\boldsymbol{\gamma}^{*}$: make X_{t+1} and Y_{t} as close as possible
Need a metric: Use adjacency matrix \rightarrow Hamming distance

Problem:

$$
\gamma^{*}=\inf _{\gamma} \sum_{k} \sum_{k^{\prime}} \gamma\left(\pi^{k}, v^{k^{\prime}}\right) d_{\text {Hamming }}\left(\pi^{k}, v^{k^{\prime}}\right)
$$

- By construction, does not suffer from label switching!
- We prove: $\boldsymbol{\gamma}^{*}$ permits unbiased estimation

Our OT coupling meets quickly by avoiding label-switching

Single-cell clustering - Dirichlet
process mixture model

- Run many pairs of coupled
chains \rightarrow compute meeting
time distribution

Our OT coupling meets quickly by avoiding label-switching

Coupling meeting-time
OT vs. label-based
Single-cell clustering - Dirichlet process mixture model

- Run many pairs of coupled chains \rightarrow compute meeting time distribution
Meeting-time
survival function 10^{-2}
(lower is better)

Our OT coupling meets quickly by avoiding label-switching

Coupling meeting-time
OT vs. label-based
Single-cell clustering - Dirichlet process mixture model

- Run many pairs of coupled chains \rightarrow compute meeting time distribution

Our OT coupling meets quickly by avoiding label-switching

Coupling meeting-time
OT vs. label-based
Single-cell clustering - Dirichlet process mixture model

- Run many pairs of coupled chains \rightarrow compute meeting time distribution
- Consider label-based couplings:

Meeting-time survival function 10^{-2} (lower is better)

Meeting Time (Sweeps)

Roadmap

- Parallelizing MCMC with Couplings:
- Background \& Notation
- The Label Switching Problem
- We Frame Gibbs Sampling as Markov Chain on Partitions
- Our Optimal Transport Coupling
- Big-O Analysis Demonstrates Fast Computation
- Improved Estimation Error and Intervals with OTC over Naïve Parallelism in Practice

Can OT-couplings compete with Naïve use of parallelism?

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text {Hamming }}(\because \cdot) \rightarrow O\left(N^{2}\right)$ time (let alone OT problem)

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text {Hamming }}(\cdot, \cdot) \rightarrow O\left(N^{2}\right)$ time (let alone OT problem)

We show: can compute coupling in $O\left(K^{3} \log K\right)$ amortized time!

- K: \# of clusters --- typically fixed or $O(\log N)$

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text {Hamming }}(\cdot, \cdot) \rightarrow O\left(N^{2}\right)$ time (let alone OT problem)

We show: can compute coupling in $O\left(K^{3} \log K\right)$ amortized time!

- K: \# of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text {Hamming }}(\cdot, \cdot) \rightarrow O\left(N^{2}\right)$ time (let alone OT problem)

We show: can compute coupling in $O\left(K^{3} \log K\right)$ amortized time!

- K: \# of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)
- Compute cost dominated by marginal kernel in practice

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text {Hamming }}(\cdot, \cdot) \rightarrow O\left(N^{2}\right)$ time (let alone OT problem)

We show: can compute coupling in $O\left(K^{3} \log K\right)$ amortized time!

- K: \# of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)
- Compute cost dominated by marginal kernel in practice

Additional challenge: Higher variance than single chains

Can OT-couplings compete with Naïve use of parallelism?

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text {Hamming }}(\cdot, \cdot) \rightarrow O\left(N^{2}\right)$ time (let alone OT problem)

We show: can compute coupling in $O\left(K^{3} \log K\right)$ amortized time!

- K: \# of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)
- Compute cost dominated by marginal kernel in practice

Additional challenge: Higher variance than single chains

- How many processors are needed?
- Previous works do not compare to naïve use of parallelism

OT-Couplings can be more precise than Naïve parallelism

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

OT-Couplings can be more precise than Naïve parallelism

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

Single-cell clustering (largest component proportion)

OT-Couplings can be more precise than Naïve parallelism

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

Single-cell clustering (largest component proportion)

trimmed mean

- Further improvement with robust estimators (clipping outliers)

OT-Couplings can be more precise than Naïve parallelism

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

Single-cell clustering (largest component proportion)

Graph Coloring trimmed mean

- Further improvement with robust estimators (clipping outliers)

OT-Couplings provide reliable confidence intervals

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals

OT-Couplings provide reliable confidence intervals

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors

OT-Couplings provide reliable confidence intervals

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors

Number of Processes

OT-Couplings provide reliable confidence intervals

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors

Number of Processes

- Analogous "intervals" from single chains do not cover the estimand

OT-Couplings provide reliable confidence intervals

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors

Number of Processes

Graph Coloring

Number of Processes

- Analogous "intervals" from single chains do not cover the estimand

Conclusions

- High accuracy via parallelism

Coupling Choice

- OT avoids label-switching

Intervals

- Intervals with coverage

Contact: tdn@mit.edu, btrippe@mit.edu, tamarab@mit.edu

Main References:

"Many processors, little time: MCMC for partitions via optimal transport couplings."
Tin Nguyen, Brian Trippe \& Tamara Broderick in AISTATS (2022)
"Optimal transport couplings of Gibbs samplers on partitions for unbiased estimation" Brian Trippe*, Tin Nguyen* \& Tamara Broderick in AABI (2021) [*equal contribution]
References Cited: Jacob, O’Leary \& Atchadé. "Unbiased Markov chain Monte Carlo methods with couplings." JRSSB (2020); Tosh \& Dasgupta. "Lower bounds for the Gibbs sampler over mixtures of Gaussians." ICML (2014).; Rand "Objective criteria for the evaluation of clustering methods." JASA (1971)

