

Many Processors, Little Time: MCMC for Partitions via Optimal Transport Couplings Brian L. Trippe

Postdoctoral Research Fellow

Columbia University Department of Statistics

Tin D. Nguyen Tamara Broderick

Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?

Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type?
 Intractability of Bayesian posterior → MCMC

Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type? Intractability of Bayesian posterior \rightarrow MCMC

BISCUIT (F-score: 0.91)

Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type? Intractability of Bayesian posterior \rightarrow MCMC

Challenge: MCMC takes a long time!

Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type? Intractability of Bayesian posterior \rightarrow MCMC

BISCUIT (F-score: 0.91)

Challenge: MCMC takes a long time! Goal: Use computational parallelism to accelerate MCMC

Example: Cluster cells based on gene expression [1]

- How large are the clusters (cell types)?
- Which cells are of the same type? Intractability of Bayesian posterior \rightarrow MCMC

BISCUIT (F-score: 0.91)

Challenge: MCMC takes a long time! Goal: Use computational parallelism to accelerate MCMC This work: Optimal transport couplings make this possible

Roadmap

• Parallelizing MCMC with Couplings:

- Background & Notation
- The Label Switching Problem
- We Frame Gibbs Sampling as Markov Chain on Partitions
- Our Optimal Transport Coupling
- Big-O Analysis Demonstrates Fast Computation
- Improved Estimation Error and Intervals with OTC over Naïve Parallelism in Practice

Set-up & challenge of burn-in bias:

• Want to compute $H^* = \int h(X) p_X(X) dX$

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$

- Set-up & challenge of burn-in bias:
- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T<\infty\,,\mathbb{E}[h(X_T)]\neq H^*$

- Set-up & challenge of burn-in bias:
- Want to compute $H^* = \int h(X) p_X(X) dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T<\infty\,,\mathbb{E}[h(X_T)]\neq H^*$
- "Naïve parallelism" gives little help!

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X) p_X(X) dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T < \infty$, $\mathbb{E}[h(X_T)] \neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_t \sim X_t$ for $t > \tau$ ("monting time")

2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time")

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T < \infty$, $\mathbb{E}[h(X_T)] \neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then: $\mathbb{E}[h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})] = H^*$

$$\frac{\langle X_T' \rangle + \langle L_{t=T'+1} n \langle X_t \rangle - n \langle T_{t-1} \rangle}{\text{unbiased estimate}} = n$$

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T<\infty\,,\mathbb{E}[h(X_T)]\neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then: $\mathbb{E}[h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})] = H^*$

• Reduce error <u>with parallelism</u>

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T < \infty$, $\mathbb{E}[h(X_T)] \neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then: $\mathbb{E}[h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})] = H^*$

• Reduce error <u>with parallelism</u>

 $H^* = \lim_{T \to \infty} \mathbb{E}[h(X_T)]$

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X) p_X(X) dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T<\infty\,,\mathbb{E}[h(X_T)]\neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then:

$$\mathbb{E}\left[\frac{h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})}{\text{unbiased estimate}}\right] = H^*$$

$$\begin{split} H^* &= \lim_{T \to \infty} \mathbb{E}[h(X_T)] & \text{Telescopic sum} & \text{Reduce error with parallelism} \\ &= \lim_{T \to \infty} \mathbb{E}\left[h(X_{T'}) + \sum_{t=T'+1}^{T} h(X_t) - h(X_{t-1})\right] \end{split}$$

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T<\infty\,,\mathbb{E}[h(X_T)]\neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then:

$$\mathbb{E}\left[\frac{h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})}{\text{unbiased estimate}}\right] = H^*$$

• Reduce error <u>with parallelism</u>

$$H^* = \lim_{T \to \infty} \mathbb{E}[h(X_T)]$$

=
$$\lim_{T \to \infty} \mathbb{E}\left[h(X_{T'}) + \sum_{t=T'+1}^T h(X_t) - h(X_{t-1})\right]$$

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X)p_X(X)dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T < \infty$, $\mathbb{E}[h(X_T)] \neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then:

$$\mathbb{E}\left[\frac{h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})}{\text{unbiased estimate}}\right] = H^*$$

$$H^* = \lim_{T \to \infty} \mathbb{E}[h(X_T)]$$
$$= \lim_{T \to \infty} \mathbb{E}\left[h(X_T') + \sum_{t=T'+1}^T h(X_t) - \frac{h(Y_{t-1})}{P(t-1)}\right] \longleftarrow Y_{t-1} \sim X_{t-1}$$

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X) p_X(X) dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T<\infty\,,\mathbb{E}[h(X_T)]\neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then:

$$\mathbb{E}\left[\frac{h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})}{\text{unbiased estimate}}\right] = H^*$$

• Reduce error <u>with parallelism</u>

Set-up & challenge of burn-in bias:

- Want to compute $H^* = \int h(X) p_X(X) dX$
- Choose <u>Markov chain</u>: $X_0, X_1, \dots \rightsquigarrow p_X$
- Problem: for any $T < \infty$, $\mathbb{E}[h(X_T)] \neq H^*$
- "Naïve parallelism" gives little help!

Unbiased MCMC Set-Up (simplified)[†] Use "coupled chain" ($Y_0, Y_1, ...$) where: 1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$ ("meeting time") Then:

$$\mathbb{E}\left[\frac{h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})}{\text{unbiased estimate}}\right] = H^*$$

• Reduce error <u>with parallelism</u>

$$H^* = \lim_{T \to \infty} \mathbb{E}[h(X_T)]$$

$$= \lim_{T \to \infty} \mathbb{E}\left[h(X_{T'}) + \sum_{t=T'+1}^{T} h(X_t) - h(Y_{t-1})\right] \longleftarrow Y_{t-1} \sim X_{t-1}$$

$$= \mathbb{E}\left[h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})\right] \longleftarrow \text{Only finitely many non-zero terms.}$$

How do we apply this to clustering problems?

Unbiased MCMC Set-Up

Use coupled chains such that

1.
$$Y_t \sim X_t$$

2. $Y_{t-1} = X_t$ for $t > \tau$

Choices for Clustering Applications:

• Transition kernel for X_t

Unbiased MCMC Set-Up

Use coupled chains such that

1. $Y_t \sim X_t$ 2. $Y_{t-1} = X_t$ for $t > \tau$

Choices for Clustering Applications:

• Transition kernel for $X_t \rightarrow$ Gibbs

Unbiased MCMC Set-Up

Use coupled chains such that

1.
$$Y_t \sim X_t$$

2. $Y_{t-1} = X_t$ for $t > \tau$

Choices for Clustering Applications:

- Transition kernel for $X_t \xrightarrow{}$ Gibbs
- Coupling that meets quickly

Unbiased MCMC Set-Up Use coupled chains such that 1. $Y_t \sim X_t$

2.
$$Y_{t-1} = X_t$$
 for $t > \tau$

Estimate (1 per processor) $h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})$ Usual MCMC Bias estimate correction

Choices for Clustering Applications:

- Transition kernel for $X_t \xrightarrow{}$ Gibbs
- Coupling that meets quickly

Unbiased MCMC Set-Up Use coupled chains such that 1. $Y_t \sim X_t$

2.
$$Y_{t-1} = X_t$$
 for $t > \tau$

Estimate (1 per processor) $h(X_{T'}) + \sum_{t=T'+1}^{\tau} h(X_t) - h(Y_{t-1})$ Usual MCMC Bias estimate correction

Choices for Clustering Applications:

- Transition kernel for $X_t \xrightarrow{}$ Gibbs
- Coupling that meets quickly
 - large $\tau \xrightarrow{}$ high variance

Unbiased MCMC Set-Up Use coupled chains such that 1. $Y_t \sim X_t$

2.
$$Y_{t-1} = X_t$$
 for $t > \tau$

- Transition kernel for $X_t \xrightarrow{}$ Gibbs
- Coupling that meets quickly
 - large $\tau \rightarrow$ high variance
 - not addressed by existing work!

Unbiased MCMC Set-Up Use coupled chains such that 1. $Y_t \sim X_t$

2.
$$Y_{t-1} = X_t$$
 for $t > \tau$

Choices for Clustering Applications:

- Transition kernel for $X_t \xrightarrow{}$ Gibbs
- Coupling that meets quickly
 - large $\tau \xrightarrow{}$ high variance
 - not addressed by existing work!

Challenge: the "label-switching" problem Equivalent re-labelings impede mixing

Unbiased MCMC Set-Up Use coupled chains such that 1. $Y_t \sim X_t$

2.
$$Y_{t-1} = X_t$$
 for $t > \tau$

Choices for Clustering Applications:

- Transition kernel for $X_t \xrightarrow{}$ Gibbs
- Coupling that meets quickly
 - large $\tau \xrightarrow{}$ high variance
 - not addressed by existing work!

Challenge: the "label-switching" problem Equivalent re-labelings impede mixing

Key idea: Develop a coupling that is agnostic to the labeling

Coupling Gibbs Over Partitions via Optimal Transport

Coupling Gibbs Over Partitions via Optimal Transport

We frame Gibbs samplers as over <u>partitions</u> instead of over labelings

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)

- We frame Gibbs samplers as over <u>partitions</u> instead of over labelings
- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\},\{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)} (\cdot \mid X_t(-n))$

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)} (\cdot \mid X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\},\{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)} (\cdot \mid X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi \mid \Pi(-n)} (\cdot \mid Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^*(p(\cdot | X_t), p(\cdot | Y_{t-1}))$

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^* (p(\cdot | X_t), p(\cdot | Y_{t-1}))$

Strategy for γ^* : make X_{t+1} and Y_t as <u>close</u> as possible

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1)=\{\{2\},\{3\}\})$
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^* (p(\cdot | X_t), p(\cdot | Y_{t-1}))$ Strategy for $\boldsymbol{\gamma}^*$: make X_{t+1} and Y_t as <u>close</u> as possible Need a metric:

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^* (p(\cdot | X_t), p(\cdot | Y_{t-1}))$ Strategy for $\boldsymbol{\gamma}^*$: make X_{t+1} and Y_t as close as possible

Need a metric: Use adjacency matrix \rightarrow Hamming distance

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^*(p(\cdot | X_t), p(\cdot | Y_{t-1}))$

Strategy for γ^* : make X_{t+1} and Y_t as <u>close</u> as possible Need a metric: Use adjacency matrix \rightarrow Hamming distance

OT
Problem:
s.t.
$$\gamma \ge 0, \sum_{k} \gamma(\pi^{k}, \nu^{k'}) = b^{k'}, \sum_{k'} \gamma(\pi^{k}, \nu^{k'}) = a^{k}$$

Tosh and Dasgupta [2014]; Rand [1971]; Nguyen, Trippe, Broderick [2022]

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^* (p(\cdot | X_t), p(\cdot | Y_{t-1}))$

Strategy for γ^* : make X_{t+1} and Y_t as <u>close</u> as possible Need a metric: Use adjacency matrix \rightarrow Hamming distance

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi \mid \Pi(-n)} (\cdot \mid X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi \mid \Pi(-n)} (\cdot \mid Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\eta k'} (\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^* (p(\cdot | X_t), p(\cdot | Y_{t-1}))$

Strategy for γ^* : make X_{t+1} and Y_t as <u>close</u> as possible Need a metric: Use adjacency matrix \rightarrow Hamming distance

OT
Problem:
s.t.
$$\gamma \ge 0$$
, $\sum_{k} \sum_{k'} \gamma(\pi^{k}, \nu^{k'}) d_{\text{Hamming}}(\pi^{k}, \nu^{k'})$
s.t. $\gamma \ge 0$, $\sum_{k} \gamma(\pi^{k}, \nu^{k'}) = b^{k'}$, $\sum_{k'} \gamma(\pi^{k}, \nu^{k'}) = a^{k}$ is
by construction, does not suffer from label switching!
Tosh and Descurta [2014]: Rend [1971]: Nouven Trippe Broderick [2022]

Tosh and Dasgupta [2014]; Rand [1971]; Nguyen, Trippe, Broderick [2022]

- $X \sim p_{\Pi}(\cdot)$ is a random partition (e.g. $X = \{\{1,3\}, \{2\}\}\}$)
- Define X(-n) as leaving out n (e.g. $X(-1) = \{\{2\}, \{3\}\}\}$)
- Gibbs transition kernel: $X_{t+1} \sim p_{\Pi|\Pi(-n)} (\cdot |X_t(-n)) = \sum_k a_k \delta_{\pi^k}(\cdot)$ $Y_t \sim p_{\Pi|\Pi(-n)} (\cdot |Y_{t-1}(-n)) = \sum_{k'} b_{k'} \delta_{\nu^{k'}}(\cdot)$

To couple X_{t+1} and Y_t , we use optimal transport: $(X_{t+1}, Y_t) \sim \boldsymbol{\gamma}^* (p(\cdot | X_t), p(\cdot | Y_{t-1}))$

Strategy for γ^* : make X_{t+1} and Y_t as <u>close</u> as possible Need a metric: Use adjacency matrix \rightarrow Hamming distance

OT

$$\gamma^{*} = \inf_{\gamma} \sum_{k} \sum_{k'} \gamma(\pi^{k}, \nu^{k'}) d_{\text{Hamming}}(\pi^{k}, \nu^{k'})$$
Problem:
s.t. $\gamma \ge 0, \sum_{k} \gamma(\pi^{k}, \nu^{k'}) = b^{k'}, \sum_{k'} \gamma(\pi^{k}, \nu^{k'}) = a^{k} \inf_{i \in \mathbb{T}} 5000$
• By construction, does not suffer from label switching!
• We prove: γ^{*} permits unbiased estimation
Tosh and Dasgupta [2014]; Rand [1971]; Nguyen, **Trippe**, Broderick [2022]

- Single-cell clustering Dirichlet process mixture model
- Run many pairs of coupled chains → compute meeting time distribution

OT vs. label-based 10^{0} Single-cell clustering – Dirichlet process mixture model • Run many pairs of coupled Meeting-time chains \rightarrow compute meeting survival function 10^{-2} time distribution (lower is better) CommonRNG • Consider label-based couplings: Maximal - Common RNG (Gibbs, 2004) OT - Maximal coupling (Jerrum, 1998) 10^{3} 10^{1}

Meeting Time (Sweeps)

Coupling meeting-time

Roadmap

- Parallelizing MCMC with Couplings:
 - Background & Notation
 - The Label Switching Problem
- We Frame Gibbs Sampling as Markov Chain on Partitions
- Our Optimal Transport Coupling
- Big-O Analysis Demonstrates Fast Computation
- Improved Estimation Error and Intervals with OTC over Naïve Parallelism in Practice

Can we compute our coupling fast enough?

• If coupling is too time intensive, we might prefer single chains

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text{Hamming}}(\cdot, \cdot) \rightarrow O(N^2)$ time (let alone OT problem)

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text{Hamming}}(\cdot, \cdot) \rightarrow O(N^2)$ time (let alone OT problem)

We show: can compute coupling in $O(K^3\log K)$ amortized time!

• K: # of clusters --- typically fixed or $O(\log N)$

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text{Hamming}}(\cdot, \cdot) \rightarrow O(N^2)$ time (let alone OT problem)

We show: can compute coupling in $O(K^3\log K)$ amortized time!

- K: # of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text{Hamming}}(\cdot, \cdot) \rightarrow O(N^2)$ time (let alone OT problem)

We show: can compute coupling in $O(K^3\log K)$ amortized time!

- K: # of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)
- Compute cost dominated by marginal kernel in practice

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text{Hamming}}(\cdot, \cdot) \rightarrow O(N^2)$ time (let alone OT problem)

We show: can compute coupling in $O(K^3\log K)$ amortized time!

- K: # of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)
- Compute cost dominated by marginal kernel in practice

Additional challenge: Higher variance than single chains

Can we compute our coupling fast enough?

- If coupling is too time intensive, we might prefer single chains
- Naïve computation of $d_{\text{Hamming}}(\cdot, \cdot) \rightarrow O(N^2)$ time (let alone OT problem)

We show: can compute coupling in $O(K^3\log K)$ amortized time!

- K: # of clusters --- typically fixed or $O(\log N)$
- Bottleneck : Orlin's algorithm in OT problem (but fast in practice)
- Compute cost dominated by marginal kernel in practice

Additional challenge: Higher variance than single chains

- How many processors are needed?
- Previous works do not compare to naïve use of parallelism

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

Single-cell clustering (largest component proportion)

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

• Further improvement with robust estimators (clipping outliers)

- Coupled chains: aggregate estimates from multiple pairs of chains
- Naïve parallelism (baseline): average (biased) estimates from single chains

• Further improvement with robust estimators (clipping outliers)

• Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors **Single-cell clustering**

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors **Single-cell clustering**

• Analogous "intervals" from single chains do not cover the estimand

- Each process gives an i.i.d. sample \rightarrow use standard errors to form confidence intervals
- Correct coverage with many processors

• Analogous "intervals" from single chains do not cover the estimand

Contact: tdn@mit.edu, btrippe@mit.edu, tamarab@mit.edu

Main References:

"Many processors, little time: MCMC for partitions via optimal transport couplings." Tin Nguyen, **Brian Trippe** & Tamara Broderick in *AISTATS (*2022)

"Optimal transport couplings of Gibbs samplers on partitions for unbiased estimation" **Brian Trippe***, Tin Nguyen* & Tamara Broderick in *AABI (*2021) [*equal contribution]

References Cited: Jacob, O'Leary & Atchadé. "Unbiased Markov chain Monte Carlo methods with couplings." JRSS-B (2020); Tosh & Dasgupta. "Lower bounds for the Gibbs sampler over mixtures of Gaussians." ICML (2014).; Rand "Objective criteria for the evaluation of clustering methods." JASA (1971) 9/9