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Roadmap

• Parallelizing MCMC with Couplings:
• Background & Notation
• The Label Switching Problem

• We Frame Gibbs Sampling as Markov 
Chain on Partitions

• Our Optimal Transport Coupling
• Big-O Analysis Demonstrates Fast 

Computation
• Improved Estimation Error and Intervals 

with OTC over Naïve Parallelism in 
Practice
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Meeting-time
survival function
(lower is better)

Coupling meeting-time
OT vs. label-based

Single-cell clustering – Dirichlet 
process mixture model
• Run many pairs of coupled

chains à compute meeting    
time distribution

• Consider label-based couplings:
- Common RNG (Gibbs, 2004)
- Maximal coupling (Jerrum, 1998)
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Roadmap

• Parallelizing MCMC with Couplings:
• Background & Notation
• The Label Switching Problem

• We Frame Gibbs Sampling as Markov 
Chain on Partitions

• Our Optimal Transport Coupling
• Big-O Analysis Demonstrates Fast 

Computation
• Improved Estimation Error and 

Intervals with OTC over Naïve 
Parallelism in Practice
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Can OT-couplings compete with Naïve use of parallelism?

Additional challenge: Higher variance than single chains
• How many processors are needed?
• Previous works do not compare to naïve use of parallelism
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Conclusions

• OT avoids label-switching • Intervals with coverage

OT vs. Naïve Parallelism 

Naïve Parallelism
Coupled Chains

• High accuracy via parallelism
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