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Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.
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Roadmap

I Diffusion models and conditional generation

I The Twisted Diffusion Sampler (TDS)

I Related work

I Properties of TDS (Theory and Simulations)

I Case study in motif-scaffolding



Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T ) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q
I xT ∼ q(xT )
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):
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Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]

Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T ) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y
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Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up

=⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T ) with ν0(x0:T ) = pθ(x0:T | y)

I Proposals: p̃(xT ) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T ) ∝ νt(x t:T )p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT ) ∝ νT (xT )/p̃(xT )

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T ) ∝ pθ(x t:T )p̃θ(y | x t)

I p̃(xT ) = pθ(xT ) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]
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The Twisted Diffusion Sampler (TDS)

Algorithm 1: Twisted Diffusion Sampler

xTk ∼ N (0,Tσ2)

wk ← p̃Tk = py |x0(y | x̂θ(xTk ))

for t = T , · · · , 1 do

{x tk , p̃tk} ∼ Multinomial ({x tk , p̃tk}; {wk})

x t−1k ∼ p̃θ(·|x tk , y) = N
(
x tk + σ2[sθ(x tk) +∇x tk

log p̃tk ], σ2
)

p̃t−1k ← py |x0(y | x̂θ(x t−1k ))

wk ← [pθ(x t−1k | x tk) · p̃t−1k ]/[p̃θ(x t−1k | x tk , y) · p̃tk ]

Return {wk}, {x0k}
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Roadmap

I Diffusion models and conditional generation

I The Twisted Diffusion Sampler (TDS)

I Related work

I Properties of TDS (Theory and Simulations)

I Case study in motif-scaffolding



Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.
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TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:
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Simulation study

Gaussian mixture q(x0)

I Tractable score &
ground truth

I y ∼
Laplace(‖x0‖2, 1)

I Estimand: E[x0 | y = 0]

I O(K−1) convergence for TDS, and
IS

I Guidance is biased.
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MNIST class-conditional generation

TDS TDS-truncate TDS-IS Guidance IS

Figure: Approximate conditional samples for class y = 7.
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Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow1

I Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

I AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

I Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

1figure credit to David Juergens and Doug Tischer
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et al., 2022]

1. Fit pθ(x) to structures
of native proteins.

2. Sample x∼pθ(x |y), for
pθ(x , y)=pθ(x)δy (xM)

Intuition: If pθ(x) > 0 only if x is a “real” molecule, then
pθ(x | y) > 0 only if x is a “real” molecule containing y .
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The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints
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I Extra degrees of freedom that are difficult to choose
I Indices of motif within chain
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Motif-Scaffolding Problem — Example Trajectory

I View of x̂θ(x t)
for 9/64
particles.

I Most probable
motif is in
black.

Figure: 9 TDS particles of motif scaffolding
trajectory.
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Motif-Scaffolding Problem — Example Results

I Up to ∼5X increase in success rate

I Performance relies on accomodation of degrees of freedom

I Including a multiplicative factor (twist scale) on the twisting
function can improve performance

I On benchmark set, state of the art performance on 9/12
problems with short (< 100 residue) scaffolds.
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Motif-Scaffolding Problem — Effective Sample Size
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Twisted Diffusion Sampling (TDS) — Summary

I Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

I Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

I Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

I Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information
Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. ”Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu
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