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Our approach
Introduce high probability lower bound on the win, b(y, a)

[Condition: For any 6 and o € [0,1], Pypi0) [W(0,y) > b(y, )] >

» 95% confidence in 6*(y) if b(y,0.95) > 0
Define ¢(y) := infyejo,1] {@/b(y, a) < 0}
> Loosely, largest level o below which b(y, «) > 0
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observed and computable unobserved(})

> observed + F; (1 — a; g(6)), with prob. «

1 —

> observed + inf Fj;_1 ( a;g(@) = A) ,with prob. «
AeC(y,152) 2

> Key observation: F; depends on 6 only through a scalar g(6)

» Split excess a across interval and quantile (union bound)
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Constructing b(y, ), the High-Confidence Lower Bound

Model: y ~ p(-;0) with 6,y € RN L(6,6'(y)) = [|¢'(y) — 6]
Estimates: 0(y) vs. 0*(y) W(0,y) := L(6,0(y)) — L(6,0*(y))
D?:uzlt Alternative

Idea: Use 1 — « lower quantile of W (6, y)
> Relies on unknown 6, and L(8,0) and L(6, 6*) are dependent

W (0,y) =[l0(y) — 0] — 16*(y) — 0>
=[10(y) — ylI* = 10" (y) — ylI* + 2(0(y) — 0" (y),y — 6)

observed and computable unobserved (1)

> observed + F} L1 — a; g(0)), with prob. a

1—
> observed + inf F{l ( a;g(é) = A),with prob. «
AEC(y,152) 2

b(y,c)
> Key observation: F; depends on 6 only through a scalar g(f)
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Example Bound — The Lindley and Smith [1972] Estimator

Model: 0,y € RN L(6,6'(y)) = 10 (y) — 0]
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Example Bound — Simulation Results

» Use simulated data for calibration, power, and risk
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» Use simulated data for calibration, power, and risk
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Educational Testing — Estimate from [Hoff, 2020]
Educational Longitudinal Study (2002-2012)

» Standardized test of reading ability in 10th grade students
» Sample of 5-50 students at N = 676 schools (y = [y1,-..,yn])
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Example Bound 2 — Affine Estimates & Correlated Noise
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Estimates: é(y):Ay +k vs. 0*(y)=Cy+ L for A,CeRNXN k fcRY

» Applications: Gaussian process kernel selection, shrinkage estimation,

linear regression

by, ) =10 — y||*> — 6% — y|I> + 2tr[(A — O)=] +

11—« 1 1 1
2z,,a\/U( 3 >+§\|22(A+AT—C—CT)22H§,
where

U(l—a) := inf {6 |[16(y) — 6" W2 < (6 + =3 (A - O)T3 |2) +
§>0

1 1 1 1
Soa/2ITH (A - O)B(A - O) TS % + 42 (4 - O)x Hapé}

is a high confidence upper bound on g(0) := H(A —C)0+ (k — Z)”;
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Model: 0,y € RN with y ~ NV(60,%)  L(6,6'(y)) = ||6'(v) — 0]|?
Estimates: O(y)=Ay + k vs. 0*(y)=Cy + £ for A,CeRN*N k (eRN

» Applications: Gaussian process kernel selection, shrinkage estimation,
linear regression

by, @) = [16 — y[|* — 0" — y|I® + 2tr{(A — O)%] +

1 « 1 1 . el
2z ,(\\“;L:< S >+:\>I:(4A.A —-Cc—-chs: %

where

U(l—a) := )i{xl('){d

21-a)/2IZ:(A-C)Z(A-C)TE2 % + 4|82 (A - O)=2 Hém}

10(y) = 0" (NIIF < (5 + [Z2 (A - O)S2 (| F) 4

is a high confidence upper bound on g(0) := ‘(—\ —C)0 + (k — UH:)

» Computable : c(y) = c_value(y, L, A, k, C, 1)
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» Computable : c(y) = c_value(y, L, A, k, C, 1)
» Some analytical challenges:
> Non-asymptotic error control [Berry, 1941]
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> Non-asymptotic error control [Berry, 1941]
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Educational Testing — Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)
» Standardized test of reading ability in 10th grade students
» Sample of 5-50 students at N = 676 schools (y = [y1,...,yn])
» Goal: estimate school-specific means, 6 € RN
> Default: A(y) =y
Small area inference [Fay and Herriot, 1979, Hoff, 2020]
» D = 8 features of each school (region, school type, enrollment, ...)
> Prior: 6, "7 N(z)B,72) for B € RP
> Likelihood: y ~ N (6, %) for £ = diag(c?/sizey,...,0? /sizen)
> Alternative 0*(y) = [In + 7 2% Ly + [In + 7227171X 3
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» Goal: estimate school-specific means, 6 € RN
» Default: 9(y) =y [A=In,k=0]
Small area inference [Fay and Herriot, 1979, Hoff, 2020]
» D = 8 features of each school (region, school type, enrollment, ...)
> Prior: 6, "7 N(z)B,72) for B € RP
> Likelihood: y ~ N (6, %) for £ = diag(c?/sizey,...,0? /sizen)
> Alternative 0*(y) = [In + 7 2% Ly + [In + 7227171X 8

c ‘
Compute c_value(y, I, A, k, C, 1)=0.9926
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Beyond Affine Estimates & Gaussian Noise

Many likelihoods are approximately Gaussian
> E.g. Logistic Regression
» Asymptotic normality of MLE — Gaussian approximation to likelihood
> We show: our bounds provide nominal coverage as sample size — oo
Many estimates are approximately affine

» Empirical Bayes

» E.g. James-Stein estimator: 05(y) = (1 — m—l—ﬁ) Y

» We show: our bounds provide nominal coverage as dimension N — oo
Open Directions:

1. Different losses - L1, zero-one
2. Different models - sparse regression

3. Tighter bounds — overly conservative
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Summary

> We proposed c-values to frequentist confidence in new estimates

» on the observed dataset
» without assumptions on 6

» Our bounds cover a range of models & estimates for squared error

» We demonstrate conclusive evaluations on real problems

Further Information

Trippe, Brian L., Sameer K. Deshpande, and Tamara Broderick.

" Confidently Comparing Estimators with the c-value.” Journal of the
American Statistical Association (2023).

Code Available: github.com/blt2114/c_values

Contact me: btrippe@mit.edu
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Coverage of Empirical Bayes

Coverage
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