Confidently Comparing Estimates with the c-value

Brian Trippe, Sameer K. Deshpande, Tamara Broderick

MIT Computational \& Systems Biology

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools

Are Complex Statistical Methods Worth the Fuss？

Learning from Educational Testing Data
－National Center for Education Statistics gathers standardized tests from U．S．high schools
－Want to know school－level performances

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach
- Share strength across similar schools

- Region
- Enrollment size
- Type (Catholic, charter, public)

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach
- Share strength across similar schools
- Estimate school performances by the posterior mean

- Enrollment size
- Type (Catholic, charter, public)

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach
- Share strength across similar schools
- Estimate school performances by the posterior mean [Hoff, 2020]
- 5-50 students tested at 676 schools

- Enrollment size
- Type (Catholic, charter, public)

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach [Lindley and Smith, 1972, Rubin, 1981, Gelman et al., 2013]
- Share strength across similar schools
- Estimate school performances by the posterior mean [Hoff, 2020]
- 5-50 students tested at 676 schools

- Enrollment size
- Type (Catholic, charter, public)

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach [Lindley and Smith, 1972, Rubin, 1981, Gelman et al., 2013]
- Share strength across similar schools
- Estimate school performances by the posterior mean [Hoff, 2020]
- 5-50 students tested at 676 schools
- Limitation: complexity, subjectivity of the prior

- Enrollment size
- Type (Catholic, charter, public)

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach [Lindley and Smith, 1972, Rubin, 1981, Gelman et al., 2013]
- Share strength across similar schools
- Estimate school performances by the posterior mean [Hoff, 2020]
- 5-50 students tested at 676 schools
- Limitation: complexity, subjectivity of the prior
- Question: is this more accurate than simple averages?

- Enrollment size
- Type (Catholic, charter, public)

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach [Lindley and Smith, 1972, Rubin, 1981, Gelman et al., 2013]
- Share strength across similar schools
- Estimate school performances by the posterior mean [Hoff, 2020]
- 5-50 students tested at 676 schools
- Limitation: complexity, subjectivity of the prior
- Question: is this more accurate than simple averages?
- This question comes up in many new analyses!

Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data

- National Center for Education Statistics gathers standardized tests from U.S. high schools
- Want to know school-level performances
- Standardized tests on small sample of students for each school - Noisy!
Hierarchical Bayesian Approach [Lindley and Smith, 1972, Rubin, 1981, Gelman et al., 2013]
- Share strength across similar schools
- Estimate school performances by the posterior mean [Hoff, 2020]
- 5-50 students tested at 676 schools
- Limitation: complexity, subjectivity of the prior
- Question: is this more accurate than simple averages? Yes (c=99.26\%)!
- This question comes up in many new analyses!

Roadmap

- Justifying complexity
- Methods for choosing methods
- The c-value as a measure of confidence (our method)
- How and when we can compute c-values
- Application to educational testing
- Extensions to nonlinear models and estimates

Roadmap

- Justifying complexity
- Methods for choosing methods
- The c-value as a measure of confidence (our method)
- How and when we can compute c-values
- Application to educational testing
- Extensions to nonlinear models and estimates

Methods for choosing Methods

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Apply to prediction, not parameter estimation!

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
Standard criterion - Risk $R(\theta, \hat{\theta}(\cdot)):=\mathbb{E}_{y \sim p(; \theta)}[L(\theta, \hat{\theta}(y))]$

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
Standard criterion - Risk $R(\theta, \hat{\theta}(\cdot)):=\mathbb{E}_{y \sim p(\cdot ; \theta)}[L(\theta, \hat{\theta}(y))]$

- Choose $\hat{\theta}(y)$ over $\theta^{*}(y)$ if $R(\theta, \hat{\theta}(\cdot))<R\left(\theta, \theta^{*}(\cdot)\right)$

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
Standard criterion - Risk $R(\theta, \hat{\theta}(\cdot)):=\mathbb{E}_{y \sim p(\cdot ; \theta)}[L(\theta, \hat{\theta}(y))]$

- Choose $\hat{\theta}(y)$ over $\theta^{*}(y)$ if $R(\theta, \hat{\theta}(\cdot))<R\left(\theta, \theta^{*}(\cdot)\right)$
- Risk depends on θ !

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
Standard criterion - Risk $R(\theta, \hat{\theta}(\cdot)):=\mathbb{E}_{y \sim p(\cdot ; \theta)}[L(\theta, \hat{\theta}(y))]$

- Choose $\hat{\theta}(y)$ over $\theta^{*}(y)$ if $R(\theta, \hat{\theta}(\cdot))<R\left(\theta, \theta^{*}(\cdot)\right)$
- Risk depends on θ !
- I care about my y

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
Standard criterion - Risk $R(\theta, \hat{\theta}(\cdot)):=\mathbb{E}_{y \sim p(\cdot ; \theta)}[L(\theta, \hat{\theta}(y))]$

- Choose $\hat{\theta}(y)$ over $\theta^{*}(y)$ if $R(\theta, \hat{\theta}(\cdot))<R\left(\theta, \theta^{*}(\cdot)\right)$
- Risk depends on θ !
- I care about my y

Goal: Measure of confidence that $\theta^{*}(\cdot)$ has smaller loss than $\hat{\theta}(\cdot)$

Methods for choosing Methods

In Machine Learning

- Information criteria (AIC / BIC)
- Cross-validation

Decision Theory
Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
Standard criterion - Risk $R(\theta, \hat{\theta}(\cdot)):=\mathbb{E}_{y \sim p(\cdot ; \theta)}[L(\theta, \hat{\theta}(y))]$

- Choose $\hat{\theta}(y)$ over $\theta^{*}(y)$ if $R(\theta, \hat{\theta}(\cdot))<R\left(\theta, \theta^{*}(\cdot)\right)$
- Risk depends on θ !
- I care about my y

Goal: Measure of confidence that $\theta^{*}(\cdot)$ has smaller loss than $\hat{\theta}(\cdot)$

1. On the observed dataset
2. Without needing subjective assumptions about θ

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$ Estimates: $\hat{\theta}(y)$ vs. $\quad \theta^{*}(y)$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$\underbrace{W(\theta, y)}_{\text {Win }}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
\downarrow Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$\underbrace{W(\theta, y)}_{\text {Win }}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$\underbrace{W(\theta, y)}_{\text {Win }}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Our approach
Introduce high probability lower bound on the win, $b(y, \alpha)$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$\underbrace{W(\theta, y)}_{\text {Win }}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Our approach
Introduce high probability lower bound on the win, $b(y, \alpha)$
Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{y \sim p(\cdot ; \theta)}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$\underbrace{W(\theta, y)}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Win

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Our approach
Introduce high probability lower bound on the win, $b(y, \alpha)$
Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{y \sim p(; ; \theta)}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

- 95% confidence in $\theta^{*}(y)$ if $b(y, 0.95)>0$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Win

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Our approach
Introduce high probability lower bound on the win, $b(y, \alpha)$
Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{y \sim p(; ; \theta)}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

- 95% confidence in $\theta^{*}(y)$ if $b(y, 0.95)>0$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\quad \theta^{*}(y)$
Default Alternative
$\underbrace{W(\theta, y)}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Win

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Our approach
Introduce high probability lower bound on the win, $b(y, \alpha)$
Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{y \sim p(\cdot ; \theta)}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

- 95% confidence in $\theta^{*}(y)$ if $b(y, 0.95)>0$

Introducing the c-value

Model: $y \sim p(\cdot ; \theta) \quad$ Loss: $L(\theta, \cdot)$
Estimates: $\hat{\theta}(y)$ vs. $\quad \theta^{*}(y)$
Default Alternative
$\underbrace{W(\theta, y)}:=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Win

- Prefer $\theta^{*}(y)$ iff $W(\theta, y)>0$

Challenge: identify if $W(\theta, y)>0$

Our approach
Introduce high probability lower bound on the win, $b(y, \alpha)$
Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{y \sim p(\cdot ; \theta)}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

- 95% confidence in $\theta^{*}(y)$ if $b(y, 0.95)>0$

Define $\mathbf{c}(\mathbf{y}):=\inf _{\alpha \in[\mathbf{0 , 1}]}\{\alpha \mid \mathbf{b}(\mathbf{y}, \alpha) \leq \mathbf{0}\}$

- Loosely, largest level α below which $b(y, \alpha)>0$

The c-value as an Informative Measure of Confidence

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$
The c-value as a quantification of confidence
Thm 1: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[c(y)>\alpha$ and $W(\theta, y) \leq 0] \leq 1-\alpha$

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$
The c-value as a quantification of confidence
Thm 1: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[c(y)>\alpha$ and $W(\theta, y) \leq 0] \leq 1-\alpha$

- Unlikely that both (A.) c-value is close to 1 and (B.) $\theta^{*}(y)$ is not more accurate than $\hat{\theta}(y)$

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$
The c-value as a quantification of confidence
Thm 1: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[c(y)>\alpha$ and $W(\theta, y) \leq 0] \leq 1-\alpha$
\checkmark Unlikely that both (A.) c-value is close to 1 and (B.) $\theta^{*}(y)$ is not more accurate than $\hat{\theta}(y)$
Using $c(y)$ to choose between $\hat{\theta}(y)$ and $\theta^{*}(y)$
Define two-stage estimator

$$
\theta^{\dagger}(y, \alpha):=\mathbb{1}[c(y)>\alpha] \theta^{*}(y)+\mathbb{1}[c(y) \leq \alpha] \hat{\theta}(y)
$$

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

The c-value as a quantification of confidence
Thm 1: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[c(y)>\alpha$ and $W(\theta, y) \leq 0] \leq 1-\alpha$
\checkmark Unlikely that both (A.) c-value is close to 1 and (B.) $\theta^{*}(y)$ is not more accurate than $\hat{\theta}(y)$
Using $c(y)$ to choose between $\hat{\theta}(y)$ and $\theta^{*}(y)$
Define two-stage estimator

$$
\theta^{\dagger}(y, \alpha):=\mathbb{1}[c(y)>\alpha] \theta^{*}(y)+\mathbb{1}[c(y) \leq \alpha] \hat{\theta}(y)
$$

- Deviates from default only when confident in alternative

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$

The c-value as a quantification of confidence
Thm 1: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[c(y)>\alpha$ and $W(\theta, y) \leq 0] \leq 1-\alpha$
\checkmark Unlikely that both (A.) c-value is close to 1 and (B.) $\theta^{*}(y)$ is not more accurate than $\hat{\theta}(y)$
Using $c(y)$ to choose between $\hat{\theta}(y)$ and $\theta^{*}(y)$
Define two-stage estimator

$$
\theta^{\dagger}(y, \alpha):=\mathbb{1}[c(y)>\alpha] \theta^{*}(y)+\mathbb{1}[c(y) \leq \alpha] \hat{\theta}(y)
$$

- Deviates from default only when confident in alternative

Thm 2: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}\left[L\left(\theta, \theta^{\dagger}(y, \alpha)\right)>L(\theta, \hat{\theta}(y))\right] \leq 1-\alpha$

The c-value as an Informative Measure of Confidence

Condition: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[W(\theta, y)>b(y, \alpha)] \geq \alpha$
The c-value as a quantification of confidence
Thm 1: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}[c(y)>\alpha$ and $W(\theta, y) \leq 0] \leq 1-\alpha$
\checkmark Unlikely that both (A.) c-value is close to 1 and (B.) $\theta^{*}(y)$ is not more accurate than $\hat{\theta}(y)$
Using $c(y)$ to choose between $\hat{\theta}(y)$ and $\theta^{*}(y)$
Define two-stage estimator

$$
\theta^{\dagger}(y, \alpha):=\mathbb{1}[c(y)>\alpha] \theta^{*}(y)+\mathbb{1}[c(y) \leq \alpha] \hat{\theta}(y)
$$

- Deviates from default only when confident in alternative

Thm 2: For any θ and $\alpha \in[0,1], \mathbb{P}_{\theta}\left[L\left(\theta, \theta^{\dagger}(y, \alpha)\right)>L(\theta, \hat{\theta}(y))\right] \leq 1-\alpha$

- If we report $\theta^{*}(y)$ only when $c(y)>0.95$, we do worse than $\hat{\theta}(\cdot)$ at ${ }_{6 / 15}$

Roadmap

- Justifying complexity
- Methods for choosing methods
- The c-value as a measure of confidence
- How and when we can compute c-values
- Application to educational testing
- Extensions to nonlinear models and estimates

Roadmap

- Justifying complexity
- Methods for choosing methods
- The c-value as a measure of confidence
- How and when we can compute c-values
- Application to educational testing
- Extensions to nonlinear models and estimates

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$
$L\left(\theta, \theta^{\prime}(y)\right)$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }}$
$W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }} W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }} W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }} W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

$$
W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}
$$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
$W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Default Alternative
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent $W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }} W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent $W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}$ $=\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}+2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y) \quad W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Default Alternative
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent

$$
W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}
$$

$$
=\underbrace{\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}}_{\text {observed and computable }}+\underbrace{2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle}_{\text {unobserved }(\ddagger)}
$$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)}_{\text {Default }}$ vs. $\underbrace{\theta^{*}(y)}_{\text {Alternative }} W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent

$$
\begin{aligned}
W(\theta, y) & =\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2} \\
& =\underbrace{\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}}_{\text {observed and computable }}+\underbrace{2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle}_{\text {unobserved }(\ddagger)}
\end{aligned}
$$

$$
\geq \text { observed }+F_{\ddagger}^{-1}(1-\alpha ; \theta) \text {, with prob. } \alpha
$$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
$W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Default Alternative
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent $W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}$

$$
=\underbrace{\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}}_{\text {observed and computable }}+\underbrace{2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle}_{\text {unobserved }(\ddagger)}
$$

$$
\geq \text { observed }+F_{\ddagger}^{-1}(1-\alpha ; g(\theta)) \text {, with prob. } \alpha
$$

- Key observation: F_{\ddagger} depends on θ only through a scalar $g(\theta)$

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
$W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Default Alternative
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent $W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}$

$$
=\underbrace{\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}}_{\text {observed and computable }}+\underbrace{2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle}_{\text {unobserved }(\ddagger)}
$$

\geq observed $+F_{\ddagger}^{-1}(1-\alpha ; g(\theta))$, with prob. α
\geq observed $+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)$, with prob. α

- Key observation: F_{\ddagger} depends on θ only through a scalar $g(\theta)$
- Split excess α across interval and quantile (union bound)

Constructing $b(y, \alpha)$, the High-Confidence Lower Bound

Model: $y \sim p(\cdot ; \theta)$ with $\theta, y \in \mathbb{R}^{N} \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)$ vs. $\theta^{*}(y)$
$W(\theta, y):=L(\theta, \hat{\theta}(y))-L\left(\theta, \theta^{*}(y)\right)$
Default Alternative
Idea: Use $1-\alpha$ lower quantile of $W(\theta, y)$

- Relies on unknown θ, and $L(\theta, \hat{\theta})$ and $L\left(\theta, \theta^{*}\right)$ are dependent $W(\theta, y)=\|\hat{\theta}(y)-\theta\|^{2}-\left\|\theta^{*}(y)-\theta\right\|^{2}$ $=\underbrace{\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}}_{\text {observed and computable }}+\underbrace{2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle}_{\text {unobserved }(\ddagger)}$ \geq observed $+F_{\ddagger}^{-1}(1-\alpha ; g(\theta))$, with prob. α

$$
\geq \underbrace{\text { observed }+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)}_{b(y, \alpha)} \text {, with prob. } \alpha
$$

- Key observation: F_{\ddagger} depends on θ only through a scalar $g(\theta)$
- Snlit ovcoce arocc intoryal and auantilo (uninn hound)

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$

$$
L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}
$$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }}$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }}$

$$
\underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}
$$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }}$

$$
\underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}
$$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\text { observed }+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger=$ unobserved

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound
$b(y, \alpha)=\|\hat{\theta}(y)-y\|^{2}-\left\|\theta^{*}(y)-y\right\|^{2}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)$
where $\ddagger=$ unobserved

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=-\left\|\frac{y+\tau^{-2} \mathbf{1}_{N} \bar{y}}{1+\tau^{-2}}-y\right\|^{2}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger=$ unobserved

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger=$ unobserved

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger=$ unobserved

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger=2\left\langle\hat{\theta}(y)-\theta^{*}(y), y-\theta\right\rangle$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }}$

$$
\underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}
$$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger=\frac{2}{1+\tau^{2}}\left\langle y-\bar{y} \mathbf{1}_{N}, y-\theta\right\rangle$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger \sim \frac{2}{1+\tau^{2}}\left[\chi_{N-1}^{2}\left(\frac{1}{4}\left\|\theta-\bar{\theta} \mathbf{1}_{N}\right\|^{2}\right)-\frac{1}{4}\left\|\theta-\bar{\theta} \mathbf{1}_{N}\right\|^{2}\right]$

- $\chi_{N-1}^{2}(\lambda)$ is non-central χ^{2} with $N-1$ degrees of freedom, non-centrality λ

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger \sim \frac{2}{1+\tau^{2}}\left[\chi_{N-1}^{2}(g(\theta))-g(\theta)\right], g(\theta)=\frac{1}{4}\left\|\theta-\bar{\theta} \mathbf{1}_{N}\right\|^{2}$

- $\chi_{N-1}^{2}(\lambda)$ is non-central χ^{2} with $N-1$ degrees of freedom, non-centrality λ

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger \sim \frac{2}{1+\tau^{2}}\left[\chi_{N-1}^{2}(g(\theta))-g(\theta)\right], g(\theta)=\frac{1}{4}\left\|\theta-\bar{\theta} \mathbf{1}_{N}\right\|^{2}$

- $\chi_{N-1}^{2}(\lambda)$ is non-central χ^{2} with $N-1$ degrees of freedom, non-centrality λ
- Interval $C(y, 1-\alpha)$ for $g(\theta)$ from $\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2} \sim \chi_{N-1}^{2}(4 g(\theta))$

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger \sim \frac{2}{1+\tau^{2}}\left[\chi_{N-1}^{2}(g(\theta))-g(\theta)\right], g(\theta)=\frac{1}{4}\left\|\theta-\bar{\theta} \mathbf{1}_{N}\right\|^{2}$

- $\chi_{N-1}^{2}(\lambda)$ is non-central χ^{2} with $N-1$ degrees of freedom, non-centrality λ
- Interval $C(y, 1-\alpha)$ for $g(\theta)$ from $\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2} \sim \chi_{N-1}^{2}(4 g(\theta))$

Take-aways: Correct coverage by construction

Example Bound - The Lindley and Smith [1972] Estimator

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}\left(\theta, I_{N}\right) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\underbrace{\hat{\theta}(y)=y}_{\text {Default (MLE) }} \quad$ vs. $\quad \underbrace{\theta^{*}(y)=\frac{y+\tau^{-2} \bar{y} \mathbf{1}_{N}}{1+\tau^{-2}}}_{\text {Alternative (Lindley and Smith) }}$

- $\theta^{*}(y)$ is a classic Bayes estimate, shrinks towards mean
- $\tau>0$ and $\bar{y}:=N^{-1} \sum_{n=1}^{N} y_{n}$

Filling out the details of the bound

$$
b(y, \alpha)=\frac{-\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2}}{\left(1+\tau^{2}\right)^{2}}+\inf _{\lambda \in C\left(y, \frac{1-\alpha}{2}\right)} F_{\ddagger}^{-1}\left(\frac{1-\alpha}{2} ; g(\theta)=\lambda\right)
$$

where $\ddagger \sim \frac{2}{1+\tau^{2}}\left[\chi_{N-1}^{2}(g(\theta))-g(\theta)\right], g(\theta)=\frac{1}{4}\left\|\theta-\bar{\theta} \mathbf{1}_{N}\right\|^{2}$

- $\chi_{N-1}^{2}(\lambda)$ is non-central χ^{2} with $N-1$ degrees of freedom, non-centrality λ
- Interval $C(y, 1-\alpha)$ for $g(\theta)$ from $\left\|y-\bar{y} \mathbf{1}_{N}\right\|^{2} \sim \chi_{N-1}^{2}(4 g(\theta))$

Take-aways: Correct coverage by construction, Computable

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ
- Distribution of
$W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ
- Distribution of $W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$
- Coverage has little θ dependence

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ
- Distribution of
$W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$
- Coverage has little θ dependence

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ
- Distribution of
- $c(y)$ detects

$$
W(\theta, y)>0
$$

$W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$

- Coverage has little θ dependence

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ
- Distribution of $W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$

- $c(y)$ detects $W(\theta, y)>0$
- More frequent selection of θ^{*} for smaller α
- Coverage has little θ dependence

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

- $b(y, \alpha)$ is conservative across levels α and θ
- Distribution of $W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$
- Coverage has little θ dependence

- $c(y)$ detects $W(\theta, y)>0$
- More frequent selection of θ^{*} for smaller α

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

$>b(y, \alpha)$ is conservative across levels α and θ
- Distribution of $W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$
- Coverage has little θ dependence

- $c(y)$ detects $W(\theta, y)>0$
- More frequent selection of θ^{*} for smaller α

- Risk of $\theta^{\dagger}(\cdot)$ trades off between $\hat{\theta}(\cdot)$ and $\theta^{*}(\cdot)$

Example Bound - Simulation Results

- Use simulated data for calibration, power, and risk

$>b(y, \alpha)$ is conservative across levels α and θ
- Distribution of $W(\theta, y)$ and $b(y, \alpha)$ depend only on $g(\theta)$
- Coverage has little θ dependence

$c(y)$ detects $W(\theta, y)>0$
- More frequent selection of θ^{*} for smaller α

Risk

- $g(\theta)$
- Risk of $\theta^{\rho}(\cdot)$ trades off between $\hat{\theta}(\cdot)$ and $\theta^{*}(\cdot)$
- For small α, θ^{\dagger} can do worse

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(\theta_{n}, \sigma^{2} /\right.$ size $\left._{n}\right)$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} / \operatorname{size}_{1}, \ldots, \sigma^{2} /\right.$ size $\left._{N}\right)$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} / \operatorname{size}_{1}, \ldots, \sigma^{2} /\right.$ size $\left._{N}\right)$
- Estimate τ, β, σ by empirical Bayes (lme4)

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} / \operatorname{size}_{1}, \ldots, \sigma^{2} /\right.$ size $\left._{N}\right)$
- Estimate τ, β, σ by empirical Bayes (lme4)
- Alternative $\theta^{*}(y)=\left[I_{N}+\tau^{-2} \Sigma\right]^{-1} y+\left[I_{N}+\tau^{2} \Sigma^{-1}\right]^{-1} X \beta$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} / \operatorname{size}_{1}, \ldots, \sigma^{2} /\right.$ size $\left._{N}\right)$
- Estimate τ, β, σ by empirical Bayes (lme4)
- Alternative $\theta^{*}(y)=\left[I_{N}+\tau^{-2} \Sigma\right]^{-1} y+\left[I_{N}+\tau^{2} \Sigma^{-1}\right]^{-1} X \beta$
- $\theta^{*}(y)$ is an affine transformation of y

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)=A y+k$ vs. $\theta^{*}(y)=C y+\ell$ for $A, C \in \mathbb{R}^{N \times N} \quad k, \ell \in \mathbb{R}^{N}$

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)=A y+k$ vs. $\theta^{*}(y)=C y+\ell$ for $A, C \in \mathbb{R}^{N \times N} \quad k, \ell \in \mathbb{R}^{N}$

- Applications: Gaussian process kernel selection, shrinkage estimation, linear regression

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)=A y+k$ vs. $\theta^{*}(y)=C y+\ell$ for $A, C \in \mathbb{R}^{N \times N} \quad k, \ell \in \mathbb{R}^{N}$

- Applications: Gaussian process kernel selection, shrinkage estimation, linear regression

$$
\begin{aligned}
& b(y, \alpha):=\|\hat{\theta}-y\|^{2}-\left\|\theta^{*}-y\right\|^{2}+2 \operatorname{tr}[(A-C) \Sigma]+ \\
& \quad 2 z_{\frac{1-\alpha}{2}} \sqrt{U\left(\frac{1-\alpha}{2}\right)+\frac{1}{2}\left\|\Sigma^{\frac{1}{2}}\left(A+A^{\top}-C-C^{\top}\right) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& U(1-\alpha):=\inf _{\delta>0}\left\{\delta \left\lvert\,\left\|\hat{\theta}(y)-\theta^{*}(y)\right\|_{\Sigma}^{2} \leq\left(\delta+\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}\right)+\right.\right. \\
& \left.z_{1-\alpha} \sqrt{2\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma(A-C)^{\top} \Sigma^{\frac{1}{2}}\right\|_{F}^{2}+4\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{\mathrm{OP}}^{2} \delta}\right\}
\end{aligned}
$$

is a high confidence upper bound on $g(\theta):=\|(A-C) \theta+(k-\ell)\|_{\Sigma}^{2}$

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)=A y+k$ vs. $\theta^{*}(y)=C y+\ell$ for $A, C \in \mathbb{R}^{N \times N} \quad k, \ell \in \mathbb{R}^{N}$

- Applications: Gaussian process kernel selection, shrinkage estimation, linear regression

```
b(y,\alpha):=|\hat{0}-y\mp@subsup{|}{}{2}-|\mp@subsup{0}{}{*}-y|\mp@subsup{|}{}{2}+2\operatorname{tr[(A-C)\Sigma] +}
```

$$
2 z_{\frac{1-\alpha}{2}} \sqrt{U\left(\frac{1-\alpha}{2}\right)+\frac{1}{2}\left\|\Sigma^{\frac{1}{2}}\left(A+A^{\top}-C-C^{\top}\right) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}}
$$

where
$U(1-\alpha):=\inf _{\delta>0}\left\{\delta \left\lvert\,\left\|\hat{\theta}(y)-\theta^{*}(y)\right\|_{\Sigma}^{2} \leq\left(\delta+\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}\right)+\right.\right.$
$\left.z_{1-\alpha} \sqrt{2\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma(A-C)^{\top} \Sigma^{\frac{1}{2}}\right\|_{F}^{2}+4\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{\mathrm{OP}}^{2} \delta}\right\}$
is a high confidence upper bound on $g(\theta):=\|(A-C) \theta+(k-\ell)\|_{\Sigma}^{2}$

- Computable: c(y) = c_value(y, $\mathrm{\Sigma}, \mathrm{~A}, \mathrm{k}, \mathrm{C}, \mathrm{l})$

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)=A y+k$ vs. $\theta^{*}(y)=C y+\ell$ for $A, C \in \mathbb{R}^{N \times N} \quad k, \ell \in \mathbb{R}^{N}$

- Applications: Gaussian process kernel selection, shrinkage estimation, linear regression

$$
\begin{aligned}
& b(y, \alpha):=\|\hat{\theta}-y\|^{2}-\left\|\theta^{*}-y\right\|^{2}+2 \operatorname{tr}[(A-C) \Sigma]+ \\
& 2 z_{\frac{1-\alpha}{2}} \sqrt{U\left(\frac{1-\alpha}{2}\right)+\frac{1}{2}\left\|\Sigma^{\frac{1}{2}}\left(A+A^{\top}-C-C^{\top}\right) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}} \\
& \text { where } \\
& U(1-\alpha):=\inf _{\delta>0}\left\{\delta \left\lvert\,\left\|\hat{\theta}(y)-\theta^{*}(y)\right\|_{\Sigma}^{2} \leq\left(\delta+\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}\right)+\right.\right. \\
& \left.z_{1-\alpha} \sqrt{2\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma(A-C)^{\top} \Sigma^{\frac{1}{2}}\right\|_{F}^{2}+4\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{\mathrm{OP}}^{2} \delta}\right\} \\
& \text { is a high confidence upper bound on } g(\theta):=\|(A-C) \theta+(k-\ell)\|_{\Sigma}^{2}
\end{aligned}
$$

- Computable: c(y) = c_value(y, $\mathrm{L}, \mathrm{A}, \mathrm{k}, \mathrm{C}, \mathrm{l})$
- Some analytical challenges:
- Non-asymptotic error control [Berry, 1941]

Example Bound 2 - Affine Estimates \& Correlated Noise

Model: $\theta, y \in \mathbb{R}^{N}$ with $y \sim \mathcal{N}(\theta, \Sigma) \quad L\left(\theta, \theta^{\prime}(y)\right)=\left\|\theta^{\prime}(y)-\theta\right\|^{2}$
Estimates: $\hat{\theta}(y)=A y+k$ vs. $\theta^{*}(y)=C y+\ell$ for $A, C \in \mathbb{R}^{N \times N} \quad k, \ell \in \mathbb{R}^{N}$

- Applications: Gaussian process kernel selection, shrinkage estimation, linear regression
$b(y, \alpha):=\|\hat{\theta}-y\|^{2}-\left\|\theta^{*}-y\right\|^{2}+2 \operatorname{tr}[(A-C) \Sigma]+$

$$
2 z_{\frac{1-\alpha}{2}} \sqrt{U\left(\frac{1-\alpha}{2}\right)+\frac{1}{2}\left\|\Sigma^{\frac{1}{2}}\left(A+A^{\top}-C-C^{\top}\right) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}}
$$

where
$U(1-\alpha):=\inf _{\delta>0}\left\{\delta \left\lvert\,\left\|\hat{\theta}(y)-\theta^{*}(y)\right\|_{\Sigma}^{2} \leq\left(\delta+\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{F}^{2}\right)+\right.\right.$
$\left.z_{1-\alpha} \sqrt{2\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma(A-C)^{\top} \Sigma^{\frac{1}{2}}\right\|_{F}^{2}+4\left\|\Sigma^{\frac{1}{2}}(A-C) \Sigma^{\frac{1}{2}}\right\|_{\mathrm{OP}}^{2} \delta}\right\}$
is a high confidence upper bound on $g(\theta):=\|(A-C) \theta+(k-\ell)\|_{\Sigma}^{2}$

- Computable : c(y) = c_value(y, $\Sigma, \mathrm{A}, \mathrm{k}, \mathrm{C}, \mathrm{l})$
- Some analytical challenges:
- Non-asymptotic error control [Berry, 1941]
- Conservatism

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} /\right.$ size $_{1}, \ldots, \sigma^{2} /$ size $\left._{N}\right)$
- Alternative $\theta^{*}(y)=\left[I_{N}+\tau^{-2} \Sigma\right]^{-1} y+\left[I_{N}+\tau^{2} \Sigma^{-1}\right]^{-1} X \beta$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} /\right.$ size $_{1}, \ldots, \sigma^{2} /$ size $\left._{N}\right)$
- Alternative $\theta^{*}(y)=\left[I_{N}+\tau^{-2} \Sigma\right]^{-1} y+\left[I_{N}+\tau^{2} \Sigma^{-1}\right]^{-1} X \beta$

Compute c_value (y, Σ, A, k, C, l)

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y \quad\left[A=I_{N}, k=0\right]$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} /\right.$ size $_{1}, \ldots, \sigma^{2} /$ size $\left._{N}\right)$
- Alternative $\theta^{*}(y)=\underbrace{\left[I_{N}+\tau^{-2} \Sigma\right]^{-1}}_{C} y+\underbrace{\left[I_{N}+\tau^{2} \Sigma^{-1}\right]^{-1} X \beta}_{\ell}$

Compute c_value(y, $\Sigma, \mathrm{A}, \mathrm{k}, \mathrm{C}, \mathrm{l})$

Educational Testing - Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002-2012)

- Standardized test of reading ability in 10th grade students
- Sample of 5-50 students at $N=676$ schools $\left(y=\left[y_{1}, \ldots, y_{N}\right]\right)$
- Goal: estimate school-specific means, $\theta \in \mathbb{R}^{N}$
- Default: $\hat{\theta}(y)=y \quad\left[A=I_{N}, k=0\right]$

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

- $D=8$ features of each school (region, school type, enrollment, ...)
- Prior: $\theta_{n} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(x_{n}^{\top} \beta, \tau^{2}\right)$ for $\beta \in \mathbb{R}^{D}$
- Likelihood: $y \sim \mathcal{N}(\theta, \Sigma)$ for $\Sigma=\operatorname{diag}\left(\sigma^{2} /\right.$ size $_{1}, \ldots, \sigma^{2} /$ size $\left._{N}\right)$
- Alternative $\theta^{*}(y)=\underbrace{\left[I_{N}+\tau^{-2} \Sigma\right]^{-1}}_{C} y+\underbrace{\left[I_{N}+\tau^{2} \Sigma^{-1}\right]^{-1} X \beta}_{\ell}$

Compute c_value(y, Σ, A, k, C, l) $=\mathbf{0 . 9 9 2 6}$

Beyond Affine Estimates \& Gaussian Noise

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood
- We show: our bounds provide nominal coverage as sample size $\rightarrow \infty$

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood
- We show: our bounds provide nominal coverage as sample size $\rightarrow \infty$

Many estimates are approximately affine

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood
- We show: our bounds provide nominal coverage as sample size $\rightarrow \infty$

Many estimates are approximately affine

- Empirical Bayes

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood
- We show: our bounds provide nominal coverage as sample size $\rightarrow \infty$

Many estimates are approximately affine

- Empirical Bayes
- E.g. James-Stein estimator: $\theta_{\mathrm{JS}}^{*}(y)=\left(1-\frac{N-2}{\|y\|^{2}}\right) y$

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood
- We show: our bounds provide nominal coverage as sample size $\rightarrow \infty$

Many estimates are approximately affine

- Empirical Bayes
- E.g. James-Stein estimator: $\theta_{\mathrm{JS}}^{*}(y)=\left(1-\frac{N-2}{\|y\|^{2}}\right) y$
- We show: our bounds provide nominal coverage as dimension $N \rightarrow \infty$

Beyond Affine Estimates \& Gaussian Noise

Many likelihoods are approximately Gaussian

- E.g. Logistic Regression
- Asymptotic normality of MLE \rightarrow Gaussian approximation to likelihood
- We show: our bounds provide nominal coverage as sample size $\rightarrow \infty$ Many estimates are approximately affine
- Empirical Bayes
- E.g. James-Stein estimator: $\theta_{J S}^{*}(y)=\left(1-\frac{N-2}{\|y\|^{2}}\right) y$
- We show: our bounds provide nominal coverage as dimension $N \rightarrow \infty$

Open Directions:

1. Different losses - L1, zero-one
2. Different models - sparse regression
3. Tighter bounds - overly conservative

Summary

- We proposed c-values to frequentist confidence in new estimates
- on the observed dataset
- without assumptions on θ
- Our bounds cover a range of models \& estimates for squared error
- We demonstrate conclusive evaluations on real problems

Further Information
Trippe, Brian L., Sameer K. Deshpande, and Tamara Broderick. " Confidently Comparing Estimators with the c-value." Journal of the American Statistical Association (2023).

Code Available: github.com/blt2114/c_values
Contact me: btrippe@mit.edu

References

Andrew C Berry. The accuracy of the Gaussian approximation to the sum of independent variates. Transactions of the American Mathematical Society, 49(1):122-136, 1941.
Robert E Fay and Roger A Herriot. Estimates of income for small places: an application of James-Stein procedures to census data. Journal of the American Statistical Association, 74(366a):269-277, 1979.
Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 2013.

Peter D Hoff. Smaller p-values via indirect information. Journal of the American Statistical Association, pages 1-35, 2020.
Dennis V Lindley and Adrian FM Smith. Bayes estimates for the linear model. Journal of the Royal Statistical Society: Series B, 34(1):1-18, 1972.

Donald B Rubin. Estimation in parallel randomized experiments. Journal of Educational Statistics, 6(4):377-401, 1981.

Coverage of Empirical Bayes

- James-Stein estimator vs. MLE coverage

- Educational testing application, coverage in simulation with empirical Bayes step

