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Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school

– Noisy!

Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools

I Estimate school performances by the posterior
mean

[Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school

– Noisy!

Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools

I Estimate school performances by the posterior
mean

[Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school

– Noisy!
Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools

I Estimate school performances by the posterior
mean

[Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools

I Estimate school performances by the posterior
mean

[Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools

I Estimate school performances by the posterior
mean

[Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools
I Estimate school performances by the posterior

mean

[Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach

[Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]

I Share strength across similar schools
I Estimate school performances by the posterior

mean [Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach [Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]
I Share strength across similar schools
I Estimate school performances by the posterior

mean [Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach [Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]
I Share strength across similar schools
I Estimate school performances by the posterior

mean [Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach [Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]
I Share strength across similar schools
I Estimate school performances by the posterior

mean [Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!
I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach [Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]
I Share strength across similar schools
I Estimate school performances by the posterior

mean [Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages?

Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Are Complex Statistical Methods Worth the Fuss?

Learning from Educational Testing Data
I National Center for Education Statistics gathers

standardized tests from U.S. high schools

I Want to know school-level performances

I Standardized tests on small sample of students
for each school – Noisy!

Hierarchical Bayesian Approach [Lindley and
Smith, 1972, Rubin, 1981, Gelman et al., 2013]
I Share strength across similar schools
I Estimate school performances by the posterior

mean [Hoff, 2020]
I 5-50 students tested at 676 schools

I Limitation: complexity, subjectivity of the prior

I Question: is this more accurate than simple
averages? Yes (c=99.26%)!

I This question comes up in many new analyses!

I Region

I Enrollment size

I Type (Catholic,
charter, public)

I . . .

2 / 15



Roadmap

I Justifying complexity

I Methods for choosing methods

I The c-value as a measure of confidence (our method)

I How and when we can compute c-values

I Application to educational testing

I Extensions to nonlinear models and estimates
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Methods for choosing Methods

In Machine Learning

I Information criteria (AIC / BIC)

I Cross-validation

 Apply to prediction, not parameter
estimation!

Decision Theory

Model: y ∼ p(·; θ)

Loss: L(θ, ·)

Estimates: θ̂(y) vs. θ∗(y)

Standard criterion – Risk R(θ, θ̂(·)) := Ey∼p(·;θ)
[
L(θ, θ̂(y))

]
I Choose θ̂(y) over θ∗(y) if R(θ, θ̂(·)) < R(θ, θ∗(·))
I Risk depends on θ!

I I care about my y

Goal: Measure of confidence that θ∗(·) has smaller loss than θ̂(·)
1. On the observed dataset
2. Without needing subjective assumptions about θ
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Introducing the c-value

Model: y ∼ p(·; θ) Loss: L(θ, ·)
Estimates: θ̂(y)

︸︷︷︸
Default

vs. θ∗(y)

︸ ︷︷ ︸
Alternative

W (θ, y)︸ ︷︷ ︸
Win

:= L(θ, θ̂(y))−L(θ, θ∗(y))

I Prefer θ∗(y) iff W (θ, y) > 0

Challenge: identify if W (θ, y) > 0

Our approach

Introduce high probability lower bound on the win, b(y, α)

Condition: For any θ and α ∈ [0, 1], Py∼p(·;θ)
[
W (θ, y) > b(y, α)

]
≥ α

I 95% confidence in θ∗(y) if b(y, 0.95) > 0

Define c(y) := infα∈[0,1]
{
α|b(y, α) ≤ 0

}
I Loosely, largest level α below which b(y, α) > 0

5 / 15
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Model: y ∼ p(·; θ) Loss: L(θ, ·)
Estimates: θ̂(y)︸︷︷︸
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The c-value as an Informative Measure of Confidence

Condition: For any θ and α ∈ [0, 1], Pθ
[
W (θ, y) > b(y, α)

]
≥ α

The c-value as a quantification of confidence

Thm 1: For any θ and α∈ [0, 1], Pθ
[
c(y) > α and W (θ, y) ≤ 0

]
≤ 1−α

I Unlikely that both (A.) c-value is close to 1 and (B.) θ∗(y) is not more
accurate than θ̂(y)

Using c(y) to choose between θ̂(y) and θ∗(y)

Define two-stage estimator

θ†(y, α) := 1[c(y) > α]θ∗(y) + 1[c(y) ≤ α]θ̂(y)

I Deviates from default only when confident in alternative

Thm 2: For any θ and α∈ [0, 1], Pθ
[
L(θ, θ†(y, α)) > L(θ, θ̂(y))

]
≤ 1−α

I If we report θ∗(y) only when c(y) > 0.95, we do worse than θ̂(·) at
most 5% of the time
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Roadmap

I Justifying complexity

I Methods for choosing methods

I The c-value as a measure of confidence

I How and when we can compute c-values

I Application to educational testing

I Extensions to nonlinear models and estimates
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Constructing b(y, α), the High-Confidence Lower Bound

Model: y ∼ p(·; θ)

with θ, y ∈ RN

L(θ, θ′(y))

= ‖θ′(y)− θ‖2

Estimates: θ̂(y)︸︷︷︸
Default

vs. θ∗(y)︸ ︷︷ ︸
Alternative

W (θ, y) := L(θ, θ̂(y))− L(θ, θ∗(y))

Idea: Use 1− α lower quantile of W (θ, y)
I Relies on unknown θ, and L(θ, θ̂) and L(θ, θ∗) are dependent

W (θ, y) =‖θ̂(y)− θ‖2 − ‖θ∗(y)− θ‖2

= ‖θ̂(y)− y‖2 − ‖θ∗(y)− y‖2︸ ︷︷ ︸
observed and computable

+ 2〈θ̂(y)− θ∗(y), y − θ〉︸ ︷︷ ︸
unobserved(‡)

≥ observed + F−1‡ (1− α;

≥ observed + inf
λ∈C(y, 1−α

2
)
F−1‡

(
1− α

2
; g(θ) = λ

)
,with prob. α

I Key observation: F‡ depends on θ only through a scalar g(θ)
I Split excess α across interval and quantile (union bound)
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Example Bound – The Lindley and Smith [1972] Estimator

Model: θ, y ∈ RN

with y ∼ N (θ, IN )

L(θ, θ′(y)) = ‖θ′(y)− θ‖2

Estimates: θ̂(y) = y︸ ︷︷ ︸
Default (MLE)

vs. θ∗(y) =
y + τ−2ȳ1N

1 + τ−2︸ ︷︷ ︸
Alternative (Lindley and Smith)

I θ∗(y) is a classic Bayes estimate, shrinks towards mean
I τ > 0 and ȳ := N−1

∑N
n=1 yn

Filling out the details of the bound

b(y, α) = inf
λ∈C(y, 1−α

2
)
F−1‡

(
1− α

2
; g(θ) = λ

)
where ‡

I χ2
N−1(λ) is non-central χ2 with N − 1 degrees of freedom,

non-centrality λ
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1 + τ−2︸ ︷︷ ︸
Alternative (Lindley and Smith)

I θ∗(y) is a classic Bayes estimate, shrinks towards mean
I τ > 0 and ȳ := N−1
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N−1(4g(θ))

Take-aways: Correct coverage by construction

, Computable

9 / 15



Example Bound – The Lindley and Smith [1972] Estimator

Model: θ, y ∈ RN with y ∼ N (θ, IN ) L(θ, θ′(y)) = ‖θ′(y)− θ‖2

Estimates: θ̂(y) = y︸ ︷︷ ︸
Default (MLE)

vs. θ∗(y) =
y + τ−2ȳ1N
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1 + τ−2︸ ︷︷ ︸
Alternative (Lindley and Smith)

I θ∗(y) is a classic Bayes estimate, shrinks towards mean
I τ > 0 and ȳ := N−1
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Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Example Bound – Simulation Results

I Use simulated data for calibration, power, and risk

I b(y, α) is conservative
across levels α and θ

I Distribution of
W (θ, y) and b(y, α)
depend only on g(θ)

I Coverage has little θ
dependence

I c(y) detects
W (θ, y) > 0

I More frequent
selection of θ∗ for
smaller α

I Risk of θ†(·) trades
off between θ̂(·) and
θ∗(·)

I For small α, θ† can
do worse

10 / 15



Educational Testing – Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002–2012)

I Standardized test of reading ability in 10th grade students

I Sample of 5-50 students at N = 676 schools (y = [y1, . . . , yN ])

I Goal: estimate school-specific means, θ ∈ RN

I Default: θ̂(y) = y

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

I D = 8 features of each school (region, school type, enrollment, . . . )

I Prior: θn
indep∼ N (x>n β, τ

2) for β ∈ RD
I Likelihood:

I Estimate τ, β, σ by empirical Bayes (lme4)

I Alternative θ∗(y) = [IN + τ−2Σ]−1y + [IN + τ2Σ−1]−1Xβ

I θ∗(y) is an affine transformation of y
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Example Bound 2 – Affine Estimates & Correlated Noise

Model: θ, y ∈ RN with y ∼ N (θ,Σ) L(θ, θ′(y)) = ‖θ′(y)− θ‖2

Estimates: θ̂(y)=Ay + k vs. θ∗(y)=Cy + ` for A,C∈RN×N k, `∈RN

I Applications: Gaussian process kernel selection, shrinkage estimation,
linear regression

b(y, α) := ‖θ̂ − y‖2 − ‖θ∗ − y‖2 + 2tr[(A− C)Σ] +

2z 1−α
2

√
U

(
1− α

2

)
+

1

2
‖Σ

1

2 (A + A> − C − C>)Σ
1

2 ‖2
F

where

U(1−α) := inf
δ>0

{
δ

∣∣∣∣ ‖θ̂(y)− θ∗(y)‖2Σ ≤ (δ + ‖Σ
1

2 (A− C)Σ
1

2 ‖2F ) +

z1−α

√
2‖Σ

1

2 (A− C)Σ(A− C)>Σ
1

2 ‖2
F

+ 4‖Σ
1

2 (A− C)Σ
1

2 ‖2
OP
δ

}
is a high confidence upper bound on g(θ) :=

∥∥(A− C)θ + (k − `)
∥∥2

Σ

I Computable : c(y) = c value(y, Σ, A, k, C, l)
I Some analytical challenges:

I Non-asymptotic error control [Berry, 1941]

I Conservatism
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Educational Testing – Estimate from [Hoff, 2020]

Educational Longitudinal Study (2002–2012)

I Standardized test of reading ability in 10th grade students

I Sample of 5-50 students at N = 676 schools (y = [y1, . . . , yN ])

I Goal: estimate school-specific means, θ ∈ RN

I Default: θ̂(y) = y

[ A = IN , k = 0 ]

Small area inference [Fay and Herriot, 1979, Hoff, 2020]

I D = 8 features of each school (region, school type, enrollment, . . . )

I Prior: θn
indep∼ N (x>n β, τ

2) for β ∈ RD

I Likelihood: y ∼ N
(
θ,Σ

)
for Σ = diag(σ2/size1, . . . , σ

2/sizeN )

I Alternative θ∗(y) = [IN + τ−2Σ]−1

︸ ︷︷ ︸
C

y + [IN + τ2Σ−1]−1Xβ

︸ ︷︷ ︸
`

Compute c value(y, Σ, A, k, C, l)

=0.9926
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Beyond Affine Estimates & Gaussian Noise

Many likelihoods are approximately Gaussian

I E.g. Logistic Regression

I Asymptotic normality of MLE

→ Gaussian approximation to likelihood

I We show: our bounds provide nominal coverage as sample size →∞

Many estimates are approximately affine

I Empirical Bayes

I E.g. James–Stein estimator: θ∗JS(y) =
(

1− N−2
‖y‖2

)
y

I We show: our bounds provide nominal coverage as dimension N →∞

Open Directions:

1. Different losses - L1, zero-one

2. Different models - sparse regression

3. Tighter bounds – overly conservative
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Summary

I We proposed c-values to frequentist confidence in new estimates
I on the observed dataset
I without assumptions on θ

I Our bounds cover a range of models & estimates for squared error

I We demonstrate conclusive evaluations on real problems

Further Information
Trippe, Brian L., Sameer K. Deshpande, and Tamara Broderick.
”Confidently Comparing Estimators with the c-value.” Journal of the
American Statistical Association (2023).

Code Available: github.com/blt2114/c values

Contact me: btrippe@mit.edu
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Coverage of Empirical Bayes

I James-Stein estimator vs. MLE
coverage

I Educational testing application,
coverage in simulation with
empirical Bayes step
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